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Abstract 

The automated operation of robots and flying drones is coupled to high security requirements with 
respect to humans and environment. Sometimes, persons have to be detected from a long distance 
or high altitude to allow the autonomous system an adequate and timely response. State-of-the-art 
Convolutional Neural Networks (CNNs) enable high object detection rates for different image data 
but only within their respective training, validation and test datasets. Recent studies show the 
limited generalization ability of CNNs for unknown data, even with merely small image changes. 
A typical source of such problems is the varying resolution of input images and the inevitable 
scaling of them to match the input-layer size of the network model. While modern cameras are 
able to capture high-resolution images of humans also from a longer distance, the practical input-
layer sizes of networks are comparably small. Hence, we investigate the reliability of a network 
architecture for human detection with respect to such input-scaling effects. The popular VisDrone 
dataset with its varying image resolution and many relatively small depictions of humans is 
surveyed as well as the high-resolution AgriDrone image data from an agricultural context. Our 
results show that the object detection rate depends on the image scaling factor as well as on the 
relative size of persons. An enlarged input-layer size of the network can only partially contribute 
to counteract the observed effects. In addition, the detection algorithm becomes computationally 
more expensive by the increased effort. 
Keywords: Human detection, drone imagery, long-distance capturing, image scaling, deep 
learning. 

Introduction 

Human Presence Detection (HPD) names different methods and technologies for checking the 
presence of a human body or parts of it in a certain area of interest or the verification that a concrete 
device is operated by a human. HPD is mainly used to verify, e.g. in safety or security tasks, and 
not limited to the human detection by image processing, which is, nevertheless, easy to apply in 
many application scenarios. 
The growing use of human-controlled or autonomously operating systems, such as flying camera 
drones, is raising new questions with regard to the known methods of object recognition in three-
dimensional image data. The algorithms need to deal with a large range of possible distances and 
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view angles to the captured object, from a few centimeters in indoor up to a dimension of hundreds 
of meters in outdoor scenarios. State-of-the-art cameras can produce sufficient, high-resolution 
images of humans from a long distance, but the input-layer size of a trainable convolutional neural 
network (as a typical object detector) is comparably small. The necessary adaptations of the scaling 
in the training and test data are non-trivial, since the networks have a limited generalization ability 
for ‘unknown data’ e.g. by only slightly modified image content (Azulay et al., 2019) or image 
quality (Ghosh et al., 2018). Further studies show that state-of-the-art CNNs are sensitive to such 
simple image modifications in the validation dataset and that a high score on the validation or test 
dataset is not necessarily an indicator for a good generalization capability of network architectures 
(Leipnitz et al., 2019). In order to select an appropriate network architecture, the generalization 
capability in real-world scenarios has to be considered to a certain extent. 
State of the art object detectors also have a deficit to detect small objects in images (Eggert et al., 
2017), so several contributions already tried to solve this problem. Yang et al. (2019) proposed a 
Clustered Detection Network. It is divided into a cluster proposal, scale estimation and dedicated 
detection sub-network. Only selected and scale-normalized cluster regions, that may contain 
objects, are presented to the detection sub-network. Small objects are more easily detectable as 
they are not distorted by scaling the input image to the CNNs input-layer size. Růžička and 
Franchetti (2018) proposed a method, that crops the input image into a minimal number of square-
overlapping patches and also smaller sub patches. The patches are scaled down and evaluated by 
the YOLOv2 network architecture. If a sub patch contains an object, which was detected by 
YOLOv2, this sub patch gets selected for final evaluation. Afterwards, the sub patch is scaled and 
presented to YOLOv2 again for a finer detection. The final bounding boxes of overlapping sub 
patches are then merged during a post-processing step. The cropped patches are still bigger than 
the input-layer size of YOLOv2, i.e., scaling is still required, which can again lead to the vanishing 
of small objects. The object aspect-ratio distortion at downscaling an image is eliminated by 
cropping only square patches. Lu and Javidi (2015) introduced a Spatial Correlation Network (SC-
Net) that supplements the CNN. It selects regions that are likely to contain small objects and 
extracts respective features. Pinckaers and Litjens (2018) presented a method that allows the 
training of CNNs with very high resolution (megapixel) images by reducing the memory footprint 
on the GPU. This approach, however, cannot be used for many network architectures, as the whole 
activation map is not present at any time, and certain operations (e.g. batch normalization) are not 
possible. 
In this contribution, our research goal is the knowledge transfer between different application 
scenarios while processing similar classes of image data, or more specifically: the relevant amount 
of information in downscaled images. A part of the image data in this case study stems from the 
EU Era.Net+ project HARMONIC on the collaborative use of drones in agricultural missions 
(Denisov et al., 2019), which also includes audio signal analysis (Jokisch et al., 2019). 
To get some empirical evidence in the image domain, we focus on reliability experiments with the 
YOLOv3 architecture (Redmon & Farhadi, 2018) for human detection, specialized on input-
scaling effects. In this context, we survey different algorithmic settings on the open-source 
VisDrone dataset (Zhu et al., 2018) and the AgriDrone dataset from the HARMONIC project 
(Leipnitz et al., 2020). 
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Both datasets contain many small depictions of humans amongst other data, shortly described in 
the following Method section. We also clarify the underlying YOLOv3 network for our training 
and tests in this section. In the section Experiment and Results, we demonstrate the negative effects 
of the input-image scaling for both selected datasets. Afterwards, we summarize and discuss our 
results and possible solutions in the last section, including some conclusions. 

Methods 

VisDrone Image Data 
The VisDrone object detection dataset is a large-scale benchmark in the computer vision with 
drones. It consists of ten classes (pedestrian, person, car, van, bus, truck, motor, bicycle, awning-
tricycle, & tricycle). For the purpose of HPD, we only utilized the pedestrian and person class and 
merged them into a single human class. The images are taken in urban and country environments, 
and they show many different group scenarios. On average, there are about 19 humans per image. 
The total dataset consists of 10,209 images, including training, validation and test data. However, 
for 1,580 images of the test dataset the annotations are not public, making a fair comparison of 
different approaches possible. Therefore, we used only the remaining 8,629 images for our tests. 
The resulting partition comprises 75.0% of images for training, 6.4% for validation, and 18.6% for 
testing. 

The image resolution ranges from 480 𝑥 360 pixels up to 2,000 𝑥 1,500 pixels. The distribution of 
the number of different human sizes relative to the image size is depicted in Figure 1 (light blue 
balks), with human sizes ranging from 0.00014% to 5.59% and a mean of 0.044%. The smallest 
human objects occupy only three pixels in images with a resolution of 1,916 𝑥 1,078 pixels. Due 
to such extreme human-object sizes but also to the varying resolutions and aspect ratios, we 
consider the dataset challenging for object detection tasks. 

AgriDrone Image Data 
The AgriDrone dataset is addressing HPD by a camera drone in an agricultural context, which 
creates interesting options e.g. in precision and smart farming. To fulfil the necessary safety 
requirements, a sufficient HPD is essential. All 4,586 images were captured between Spring and 
early Winter 2019 by two different drones – DJI Mavic2 Enterprise and DJI Mavic Pro that share 
the same resolution of 3,840 𝑥 2,160 pixels. The dataset is split into 69.9% training, 10.0% 
validation and 20.1% test data. The distribution of different human-object sizes in relation to the 
image size (blue balks) can be compared with the respective VisDrone distribution (light blue) in 
Figure 1. The biggest human object has a relative size of 3.9%, and the smallest human a size of 
0.0039% with a mean of 0.136%. Due to the rural application area, the average number of humans 
per image is about two only, which results in a smaller dataset than in the case of the VisDrone 
data, while the humans are usually bigger. 
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Figure 1. Histogram of the Relative Human-Object Size in Relation to the Image Size –  

VisDrone (upper balks, light blue) versus AgriDrone Dataset (lower balks, blue) 
 

YOLOv3 Network Architecture 
YOLOv3 is a popular and state-of-the-art CNN for object detection. Benjdira et al. (2019) 
demonstrated the accuracy and speed advantage of this architecture in a car detection-by-UAVs 
scenario. A good comparison of different CNN architectures for object detection is given by Wang 
et al. (2019). Our derived processing pipeline is shown in Figure 2. All input images with width 𝑤 
and height ℎ have to be scaled to the input-layer size 𝑖 by the horizontal scale-factor 

𝑠& = 	
)
*
  

and the vertical scale-factor 

𝑠+ = 	
,
*
 . 

YOLOv3 processes the input image, and the result is a list of bounding boxes around the objects. 
Afterwards, the coordinates have to be scaled up again by 𝑠& and 𝑠+ to match the object position 
in the original image. The input-layer size of YOLOv3 can be adjusted. While the number of 
learnable parameters in the neural network does not change significantly, the sizes of the interim 
and final features maps scale appropriately. Within the hardware’s memory limits different input-
layer sizes can be defined, which allows for bigger or smaller scale factors. 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 8, Issue 1, 2020 

 

 57 

Figure 2. Block Scheme of the Image-Scaling and Detection Process 

Experiment and Results 

Image Preprocessing and Scaling 
During the training, validation, testing and inferencing in the real world, every input image is 
scaled to the square input-layer size of YOLOv3. In general, three scaling methods including their 
respective image manipulations can be considered: 

• Cropping: The image is cropped to the input-layer size of the CNN, which losses of image 
parts but preserves the object size and aspect ratio. 

• Resizing: The image is resized to the input-layer size of the CNN. Image and also object 
width and height are divided by 𝑠& and 𝑠+ respectively. The aspect ratio in case of a non-
square image changes and distorts the objects inside. 

• Resizing with aspect ratio preservation: The image width and height are scaled by the larger 
of the two scaling factors, 𝑠& or 𝑠+, which preserves the aspect ratio of non-square images 
but scales one side smaller than the input-layer size. In this case, padding has to be applied. 
The method preserves the aspect ratio of the object but produces the smallest object size. 

The YOLOv3 implementation in our experiment uses a resizing method that does not preserve the 
aspect ratio. For that matter, the resizing is realized as a trivial subsampling that leads in any 
configuration case to a loss in information, which may cause e.g. the effect that extremely small 
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objects, especially the ones with large scaling factors, are vanishing from the subsampled data 
pattern. 

Network Configuration and Detection Test 
The standard YOLOv3 implementation uses an input-layer size of 416 𝑥 416. All experiments 
have been carried out with the hardware GPU Nvidia RTX2080TI. The mini-batch size is 64.  
The object detection metric commonly used for measuring and comparing the performance of 
convolutional neural networks in the object detection, is the mean average precision at an 
intersection over union (IOU) threshold of 50% (𝑚𝐴𝑃01). Table 1 and Table 2 show the respective 
scores across the validation and test data after a prior training with the regarding (training) datasets 
and the processing speeds in frames per second (FPS). 

Table 1. Training Results of YOLOv3 on the VisDrone Dataset 
 Input size 320𝑥320 Input size 416𝑥416 Input size 608𝑥608 Input size 832𝑥832 

Dataset 𝑚𝐴𝑃01[%] FPS 𝑚𝐴𝑃01[%] FPS 𝑚𝐴𝑃01[%] FPS 𝑚𝐴𝑃01[%] FPS 

Validation 24.97 
113.0 

33.04 
93.0 

45.78 
57.5 

47.46 
33.9 

Test 11.80 15.18 23.39 23.52 

 

Table 2. Training Results of YOLOv3 on the AgriDrone Dataset 
 Input size 320𝑥320 Input size 416𝑥416 Input size 608𝑥608 Input size 832𝑥832 

Dataset 𝑚𝐴𝑃01[%] FPS 𝑚𝐴𝑃01[%] FPS 𝑚𝐴𝑃01[%] FPS 𝑚𝐴𝑃01[%] FPS 

Validation 87.88 
32.7 

89.83 
31.6 

95.35 
30.0 

87.06 
28.6 

Test 86.05 85.66 91.99 85.73 

 

Although the scaling factors within the AgriDrone data are bigger (𝑠& = 9.23 & 𝑠+ = 5.19) than 
across the VisDrone dataset (𝑠& = 1.15…4.81 & 𝑠+ = 0.83…3.61), in case of a 416 𝑥 416 input-
layer size, the detection results for the AgriDrone dataset are significantly better. One reason is the 
reduced complexity of the AgriDrone data in terms of the number of images and persons. 

For both datasets, the input-layer size of 608	𝑥 608 shows the highest detection results. To train 
the CNN with an input-layer size of 832	𝑥 832, the mini-batch size has to be halved due to 
hardware limitations. This trade-off is the main reason for somewhat decreased detection-rates 
while increasing the input-layer size. 
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Figure 3. Histogram of “very small” Annotated (light blue or blue) and Correctly Detected 

Human Sizes (green) in the Validation Datasets – VisDrone (left) versus AgriDrone Data (right) 

Our results show that an increased input-layer size improves the detection rates for small humans 
in both datasets while being slower due to the increased computational effort. Even with an input-
layer size of 832	𝑥 832, the scaling of input images is still required, which can lead to a vanishing 
of small humans as one of the reasons for the difference between the detections rates on the 
AgriDrone and VisDrone datasets. For example, a three-pixel sized object in the VisDrone dataset 
is completely lost due to the subsampling, and the CNN model has no possibility to detect it. But 
also the remaining down-scaled objects are hardly to detect. The histograms in Figure 3 show the 
distribution of very small human-sizes in both validation datasets (blue) and the number of 
correctly detected (true-positives) objects by the CNN with an input-layer size of 416	𝑥 416 
(green). Especially in the VisDrone dataset, many small humans cannot be detected, because they 
either vanish completely, or they are too small to be detected. As the AgriDrone dataset lacks such 
extremely small human objects, the problem does not occur, although the scaling factors are 
typically much larger. 

Discussion and Conclusions 

The scaling of the input images introduces a number of implications, which decreases the CNN 
detection rate. If the scaling factor is too high, then human objects can become too small, which 
limits the maximum image size as the adverse effect becomes stronger with increasing size of the 
original image. Humans can either vanish due to the scaling or be too small in the input-layer to 
reliably detect, but this minimum object size is difficult to determine. 
By dealing with very small human objects in real world images, we have shown that not only the 
scaling factors for the image but also the relative human size should be considered. By applying a 
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variety of image resolutions, also the humans’ aspect ratio gets distorted e.g. by the scaling with 
fluctuating horizontal and vertical factors, which increases the detection difficulty. Such 
susceptible HPD can lead to fatal consequences in a drone application. From the perspective of 
applied knowledge management, the design of HPD methods has to consider the real-world 
conditions and robustness issues of the application to a larger extent rather than a highest possible 
detection rate on laboratory data. For long-distance image capturing scenarios, developers should 
therefore use alternative detection models or design novel ones, beyond YOLOv3or similar CNNs 
with size restrictions at the input layer.  
Downscaling human objects by extreme factors (until the objects become undetectable) should be 
prevented, of course. To mitigate such effects, some state-of-the-art solutions have been already 
discussed in the introduction, but they can solve the scaling problems only to a certain extent. The 
theoretically optimal solution would crop the image in square-overlapping patches with exactly 
the same resolution as the input-layer size of the network. The vanishing of small objects due to 
scaling and the aspect-ratio distortion could be solved on the expense of speed, as inferencing 
times are linearly scaling with the number of patches. Thus, network models might become truly 
independent of image-resolution, which has to be confirmed in future studies. 
A drone is capable of measuring its flight altitude and the camera orientation and can therefore 
estimate the distance to persons on the ground. When persons are becoming too small for a reliable 
detection, switching to the proposed overlapping patches-method or another suitable method to 
detect very small persons would be possible, but has to be investigated further. 
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