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Abstract 

This paper refers to the application of Convolutional Neural Networks (CNNs) for the 
classification of 3D geometries from Computer-Aided Design (CAD) datasets with a large 
proportion of unknown unknowns (classes unknown after training). The motivation of the work is 
the automatic recognition of standard parts in the large CAD-based image data set and thus, 
reducing the time required for the manual preparation of the data set. The classification is based 
on a threshold value of the Softmax output layer (first criterion), as well as on three different 
methods of a second criterion. The three methods for the second criterion are the comparison of 
metadata relating to the geometries, the comparison of feature vectors from previous dense layers 
of the CNN with a Spearman correlation, and the distance-based difference between multivariate 
Gaussian models of these feature vectors using Kullback-Leibler divergence. It is confirmed that 
all three methods are suitable to solve an open set problem in large 3D datasets (more than 1000 
different geometries). Classification and training are image-based using different multi-view 
representations of the geometries. 
Keywords: Open set problem, unknown unknowns, Convolutional Neural Networks, 3D 
geometries, Metadata, Spearman correlation, Kulback-Leibler divergence. 

Introduction  

In the task of manual preparation, virtual training procedures for assembly tasks in the automotive 
industry are created based on the 3D design data (Computer-Aided Design (CAD) data) of the 
manufacturers (Leu et al., 2013). Unfortunately, the CAD data cannot be processed automatically 
because it is often faulty, which is mainly caused by the human factor. For example, there are no 
uniform material assignments in this data, the color information is chosen rather randomly, and 
the part labels and designations are also not uniform. Furthermore, it is often observed that 
geometries at the same position are modeled several times which have to be corrected manually. 
This means that labels or material mappings of the individual geometries in the construction data 
set were forgotten or incorrectly assigned during the manual design cycle.  Especially for small 
and repetitive geometries, this often means a high workload with highly repetitive work steps 
(Horejsi, 2015). It is, therefore, reasonable to develop an automatic AI-based algorithm especially 
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for frequently occurring standard parts. These standard parts are components such as cable clips, 
screws, or connectors, which are often used by the manufacturer. This means the manufacturers 
also use the same or similar components in different models, for example, to fasten cables to the 
car body. The components, therefore, always have the same or similar geometries (Gann, 1996; 
Klug, 2013). The development of an algorithm that supports the process of standard part 
identification is the motivation of this work. Therefore, data sets with more than 1000 different 
geometries (i.e., screws, nuts, sheet metal parts, cables, etc.) are used, which together form the data 
set of an entire vehicle (Faath & Anderl, 2016). The objective of this work is to automatically 
extract, classify and label specifically selected geometries with the same or similar shape from the 
dataset. Classes such as screws, plugs, standard parts, or cable clips (plastic parts for attaching the 
cable bundle to the car body) are considered here. The background for automating these work steps 
is the further usability of the data sets. Especially for the subsequent steps in the production of a 
vehicle, the order, and structure, as well as consistent labeling of the geometries is the basis for 
further usage (Minow et al., 2020). For the AI-based identification of these standard parts, a 
supervised learning approach is utilized. Hereby, given examples with known labels are used to 
train a Convolutional Neural Network (CNN). CNNs are a subtype of neural networks that can 
generate feature vectors or feature spaces by reducing dimensionality and convoluting a wide 
variety of input data. These features are then commonly used to distinguish and classify different 
datasets. Besides speech and text, images are most commonly used as input data for these kinds of 
classifiers (Chauhan et al., 2018).  
The main focus of this paper is on the problem of “Open World Recognition” (Bendale & Boult, 
2015b) or “Open Set Recognition” (Bendale & Boult, 2015a; Scheirer et al., 2013). It describes 
the problem of neural networks being not able to classify data unrelated to any of the pre-trained 
classes as not belonging to any pre-trained class, which can be paraphrased as “classifying 
unknowns as unknowns”. Neural networks achieve high accuracies in classifying labeled and 
structured image datasets (Su et al., 2015), but they lack the “ability” to recognize what they do 
not know (Bendale & Boult, 2015b). While it is possible to train an additional class of known 
unknowns, it is impossible to train all kinds of inputs of an open world as input. This means that 
for each neural network that needs to perform a classification task in an open scenario (open set), 
there will be a set of unknowns that were not included in the training data (Bendale & Boult, 
2015b). To prevent the classification of false positives from the open set by the CNN using the 
Softmax classification layer, three approaches for a respective second criterion are investigated in 
this work. The remainder of this paper is structured as follows. First, the state of the art in 
geometry-based classification and recent discussions on the open set problem are referred to. 
Afterwards, the three proposed methods to overcome the open set problem on geometrical data are 
introduced. The next section describes in detail the experimental design of the experiments 
followed by a result section. The paper is then completed with a conclusion and discussion. 

State of the Art 

Working with 3D data as input data for the training of CNNs is part of current research. In the 
literature, training methods, based on 3D data, are distinguished from training methods that use a 
multi-view representation of the geometries. Classification using 3D geometries means accessing 
the three-dimensional composition of the data directly by using polygon structures, voxels, point 



Online Journal of Applied Knowledge Management 
A Publication of the International Institute for Applied Knowledge Management 

Volume 10, Issue 1, 2022 

 

 - 64 - 

clouds, or geometry metadata (Charles et al., 2017; Feng et al., 2019,). The other approach is to 
use multi-view representations (Hamdi et al., 2021; Jing et al., 2020; Li et al., 2020; Su et al., 
2015). Thereby images of the 3D geometry are taken from different angles and are used as input 
data for the CNN. Viewing and training with 2D images instead of 3D data sets results to a certain 
extent in advantages in performance and computation time (Su et al., 2015). The performance 
advantage is explained by the fact that the computational effort with 2D data is significantly lower 
than that with a 3D data set. Furthermore, there are investigations on the achieved accuracy of the 
meshes with the use of 3D data compared to the use of multi-view representations. In (Qi et al., 
2016), it was found that 3D-based CNNs performed on average 7.3% worse than CNNs utilizing 
a multi-view approach. Another advantage of the multi-view approach is that several images of a 
3D geometry can be acquired, and thus a network can be trained only with multiple images of a 
single geometry. Especially with geometries, which appear only once in a data set and have no 
"similarity" with others, this is a clear advantage. So, regarding the application in this paper this 
means if the same cable clip is used several times in a car, the goal is to train and automatically 
recognize it at any position in the vehicle. However, since the geometry only exists once, in the 
case of training with 3D data, only the same clip is used for training several times, which can 
quickly lead to overfitting. In a multi-view approach, different images with different viewing 
angles of a single geometry can be acquired and used for training. This approach avoids overfitting. 
Due to the advantages of the multi-view approach compared to the use of point clouds or meshes, 
the training is performed with multi-view image data of the geometries in this paper. As a 
representation method, a normal mapping of the surface is used. As solutions to the problem of 
classifying unknown unknowns in an open set recognition task, various approaches are known 
from the literature (Bendale & Boult, 2015a; Chen et al., 2019; Hassen & Chan, 2020; Uçar et al., 
2017). All of the mentioned approaches are based on the assumption that the information, whether 
a sample belongs to a known or an unknown class, is decoded in the generated features of the 
CNN, but it cannot be provided by using only a Softmax activation function in the last layer 
(Hassen & Chan, 2020). Instead, an approach is taken in which the features of the layers before 
the output layer are used for the computation of a probability distribution (Hassen & Chan, 2020) 
or also for the classification utilizing another ML algorithm (Uçar et al., 2017). This leads to a 
second criterion, in which after the classification by the CNN, another decision layer is used to get 
the final decision whether the current sample is actually a part of a known group or an unknown 
part of the open set, and thus resulting in a false-positive classification. In this work, this approach 
is adopted and evaluated for the classification of 3D geometries. The principle of the first criterion 
remains the same and is based on the image classification of the multi-view representations 
employing the Softmax output layer of the CNN. For the following second criterion (additional 
information to the Softmax output layer), three approaches are developed and compared regarding 
their feasibility in solving the current open set problem. 

Experimental Design 

2D Image Generation from 3D CAD Data – Knowing the Knowns 
For this application, CAD data was used as training data. To preserve the knowledge of this 3D 
data, specific pre-processing steps were conducted. Firstly, a multi-view approach was used, which 
has been shown in the literature to be superior compared to point clouds and mesh nets both in 
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terms of recognition accuracy and computation time (Qi et al., 2016b; Su et al., 2015). For multi-
view representations, the 3D CAD geometries are represented as 2D images from different 
viewpoints and then used as input data for the CNN. This allows a higher resolution to be used as 
opposed to using 3D data. Furthermore, the multi-view approach prevents overfitting since 
multiple images (with different information) are created from a single geometry. The following 
steps are performed to generate the images: At the beginning, a principal axis transformation is 
performed with each geometry to orient the geometry along the largest axis at the coordinate origin. 
Then, the smallest possible bounding box is placed around the geometry. The dimensions of this 
bounding box (height, width, depth) are then used as metadata for later classification. Although, 
the generation of 3D geometries, the mapping of them as 2D multi-view images, and the 
calculation of the metadata from the bounding box can be done automatically, the resulting images 
must be manually labeled (MX10screw, clip, etc.) and care must be taken that there is not a 
severely underrepresented or overrepresented class. Otherwise, this can lead to under- or 
overfitting. As a final step in the creation of the "Knowns", the data still needs to be split into 
training and testing data. In this work, two thirds (2/3) of the data is used for training and one third 
(1/3) for testing. 

Data Generation and Assessing the Knowledge Representation 
For the generation of the training images, an internal tool of the company LIVINGSOLIDS GmbH 
is used. In order to further guarantee optimal preservation of the 3D information also in the 2D 
data, the surface rendering (i.e., the representation of the surface structure) is one crucial aspect. 
In this work two common methods are used for this, a gray value image and optical coloring using 
the normal vector of the surfaces, denoted as surface normals in the following (surface coloring), 
see Figure 1. 

Figure 1.  Two Types of 2D Data Generation, Grayscale Image (Left) and Surface Coloring 
(Right). 

As shown in Figure 1, the normal mapping shows a more detailed depth impression. This 
assumption could be confirmed by the calculation of the entropy of the two types of image 
generation. The mean value of the entropy for normal mapping is E=3.5, approximately 1.16 times 
higher than the mean value for the grayscale mapping (E=2.34). This difference in information 
content is also evident when training an initial CNN (MobileNetV3Large from Google) consisting 
of 4 blocks with a convolutional layer, a max pooling layer, two dense layers, and a dropout layer 
each. The difference in recognition accuracy on the test data here is 0.2% after 16 epochs, with 
97.2% accuracy from normal mapping vs. 97% with gray values. The difference found by entropy 
does not show up as strongly in the later classification. However, since the creation of the normal 
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mapping does not require significant computational effort compared to the gray values, the normal 
mapping is used for further experiments.  

Management of Knowledge by Utilizing Transfer Learning 
For the classification architecture, pre-trained models are used, which have been trained using 
large datasets from the field of object recognition (Russakovsky et al., 2014). A suitable dataset is 
represented by ImageNet, which consists of approximately 14 million images. Transfer learning is 
based on the idea of inductive training (Thrun & Pratt, 1998). Here, the first layers of a pre-trained 
model are used to generate generic features for object description. To adapt to the current dataset, 
one or more classification layers are then added, consisting of dense layers and a Softmax layer. 
In the Softmax layer, the number of classes to be recognized is encoded. Afterwards, this 
classification layer is trained using the current data. In order to select the optimal model for transfer 
learning with respect to the task at hand, a corresponding training data set was created and the 
various available pre-trained model architectures were trained over three epochs with the created 
data set. Afterwards, both the recognition accuracy and the number of operations per run were 
analyzed. Here, only the added classification layer and the Softmax layer were trained. The feature 
generation comes exclusively from the architectures pre-trained using Image Net. For the later 
application, not only a high recognition rate is crucial but also as little computation time as 
possible, so that the automatic recognition of the different standard parts offers an advantage over 
manual processing. In total, 26 different models from 8 different architecture families (MobileNet, 
EfficientNet, DenseNet, Inception, ResNet, NASNetMobile, VGG, and Xception) were compared 
in this work (Krishna & Kalluri, 2019). The results obtained are shown in Figure 2. 

 

Figure 2.  Comparison of the Performance Regarding the Needed Operations for Different 
Network Architectures on the Utilized Dataset of Cable Clips. 

The evaluation of the results shows that model architectures optimized for lightweight mobile 
applications in particular can still achieve very good results (MobileNetV3Large, 73.5% training 
accuracy, 4.2 million operations). Larger model architectures (i.e., more operations) achieve only 
slightly better results here (EfficientNetB6, 74.9%, 4.1Mio operations). Therefore, the 
MobileNetV3Large model is used for further adaptation in this paper (Howard et al., 2019). 
Subsequently, a suitable architecture must now be developed that provides reliable results after 
transfer learning. This means defining layers that need to add to the existing convolutional base of 
the MobileNetV3Large and that are trained onto our previously defined dataset. For this purpose, 
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3 models with increasing complexity are experimentally tested. All three approaches are based on 
the MobileNetV3Large architecture and are shown in Figure 3. 
 

Figure 3.  Illustration of the Three Utilized Classification Layer Designs for the Transfer 
Learning Step. 

In subsequent transfer learning, the added classification layers are first trained over ten epochs 
with a learning rate of 0.0001. Then, fine-tuning is performed over five epochs with 1/10 of the 
original learning rate. Here, the upper layers of MobilenetV3large are set as trainable and thus also 
tuned. In terms of recognition accuracy on the training data, all models show a high performance 
of over 99%. However, with respect to the recognition accuracy on the validation set, there are 
stronger differences that indicate overfitting, especially in architecture 1 (Figure 3, left). Adding 
dropout, pooling, and a dense layer can counteract the overfitting in architecture 2 (Figure 3, 
middle). Adding another dense layer (architecture 3, Figure 3 right) again leads to worse 
performance. Here it can be assumed that underfitting now takes place.  Thus, model architecture 
2 with very good performance has been selected for further analyses.  

Data Generation 
For further evaluation, in total three data sets are considered. The first data set A only contains 
cables, clips, connectors, and add-on parts of the cable bundles. The data sets B and C contain all 
geometries of the respective vehicle (i.e., screws, end-plates, steering wheel, cables, engine parts, 
transmission parts). The cable clips, which are also used for the training in the further process, 
originate from data set A. They are used to attach cables to the body and have been selected here 
as examples of standard parts that exist in a large variety but are reused in different vehicles. Data 
sets B and C are used to verify whether the generalized training approach is suitable for extracting 
these standard parts from other data sets as well. For the classification of the data sets, an image 
data set consisting of 30 images each is created from each geometry in the 3D datasets.  The 
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principle is illustrated in Figure 4 using an example data set (Bloodhound Education, 2022) with 
the generation of images of three selected geometries.  

 
Figure 4. Image Generation From Multiple 3D Geometries 

Proposed Methods for Open-Set Recognition 

In the context of the application discussed in this paper, the already mentioned topic of unknown 
unknowns plays a major role. Due to the high similarity of standard parts and special parts, which 
do not all have their own class but also should not be (falsely) recognized as standard parts. Three 
different approaches for the recognition of unknown unknowns are developed and evaluated. 

Metadata Comparison 
The first of the three approaches developed takes advantage of 3D geometries over pure image 
data. Usually, 3D geometries have metadata information (height, width, depth, surface area), 
providing additional knowledge for the classification process. Therefore, the first approach is to 
test whether incorporating this metadata leads to an improvement in the identification of unknown 
unknowns, i.e., the reduction of false-positive results. The training and subsequent classification 
steps in this first approach are based on different images of a given geometry. If a geometry sample 
is recognized by the Softmax output layer of the CNN during testing, the metadata of this geometry 
is compared with the metadata of the (known) geometry of the corresponding class from the 
training set using a basic comparison in the absolute values of the height, width, depth and surface 
specifications. If the metadata match between the two geometries is greater than a threshold of 
95%, then the geometry is finally classified as the given class, if not, the classification is rejected. 

Feature Vector Correlation 
The second approach uses the output of a layer before the final output layer as features. Features 
from previous layers of the CNN can be generated using Keras’s functional API (Gulli & Pal, 
2017). Specifically, the three layers before the final output layer are used here, usually denoted as 
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the feature dense layer. The output of the feature dense layer is a matrix with the dimension 1280 
* “the number of input images in the batch process”. In the current study, a total of 30 images of 
each geometry in the data set are used for the prediction and also for generating an original average 
feature vector from the training data. This set has been experimentally evaluated with 
consideration of computation time and accuracy. From this matrix, the average can be calculated 
for each row and thereby the average feature vector for the whole prediction. Thus, for each 
geometry in the training data set, in addition to the metadata information, the average feature 
vector, as well as a Spearman correlation between the different vectors, are stored. For the original 
average feature vector from the training data, the results of the input images are halved for this 
purpose and then the average feature vectors of these halves are correlated. The Spearman 
correlation is calculated by the following equation (Meloun & Militky, 2011, p.661):  

 
In this equation, µ is the respective mean value of the vector x (feature vector from images 1-15) 
or y (feature vector from images 16-30). The classification of a data set is performed as in method 
one, with the classification of the Softmax layer (first criterion) and then with the second criterion 
(in this case Spearman correlation). To calculate the Spearman correlation, first an average feature 
vector from the third layer before the output layer is determined for all images of one geometry in 
the dataset. This vector is then compared via Spearman correlation to the average feature vector of 
the geometry classified by the output layer (from train data). If the correlation deviates by more 
than 10% from the correlation result of the feature vectors of the original training data, the 
geometry’s classification result is rejected. If a deviation of less than 10% is calculated, the 
classified geometry is accepted (second criterion).  

Comparison of Multivariate Gaussian Models/Kullback-Leibler 
Distance 
The generated feature matrix from the second approach can not only be used to generate an average 
feature vector used directly for a correlation but it can also be used to form a stochastic distribution. 
At first, the distance between the distribution of the prediction and the corresponding distribution 
of the original class is calculated. Afterwards, this distance is used to decide whether the images 
under consideration belong indeed to the same class or are a part of the unknown unknowns. From 
the literature, this approach is known from the work of Abhijit Bendale (Bendale & Boult, 2015a), 
in which the author used different Weibull distribution functions as a second criterion for the 
solvability of an open set classification with image datasets. In this work, it is examined as a third 
approach whether this is also suitable for the classification of 3D geometries, but with the 
difference that no Weibull distribution functions are used. Instead, multivariate Gaussian functions 
are used, because it can be assumed that the mean value (average feature vector) is highly similar 
among the used images. The mathematical description of a multivariate Gaussian model is given 
by the mean vector and the covariance matrix (Meloun & Militky, 2011): 
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For each geometry in a training dataset, the corresponding covariance matrix of every class is 
stored. As the mean vector µ for the description of the multivariate Gaussian model, the already 
generated average feature vector is used. For the prediction, the multivariate Gaussian distribution 
of the recognized class (by Softmax layer, first criterion) and the multivariate Gaussian distribution 
of the considered geometry images (feature vectors) are compared. If the distance between these 
two models is too large due to a threshold value, the geometry is not classified and vice versa 
(second criterion). The distance between the two Gaussian models is calculated using the 
Kullback-Leibler divergence (Duchi, 2018):  

 
The Kullback-Leibler divergence DKL(N0, N1) is calculated using the covariance matrices SX1 and 
SX0 and the mean vectors µ1 and µ0 of the two distribution functions. As a threshold, a DKL is 
experimentally determined using distances between N0 and N1. The final threshold is then set to 
15, for distances >15 the classification result is rejected and for smaller distance values the 
classification result is accepted. 

Results 

The CNN utilized in this study is Google's MobileNetV3Large model (Howard et al., 2019). It was 
pre-trained with the ImageNet dataset (Stanford Vision Lab, 2022) and then adapted for the image 
representations of the 3D geometries by using transfer learning and optimized with a fine-tuning 
using Keras (https://keras.io/). The same CNN architecture is used as the basis for classification in 
all experiments. The difference between the different classification experiments is only in the use 
of the respective second criterion, i.e., the decision whether the object is part of the known class 
or part of a yet unknown class. For the final evaluation, the CNN output is tested against a 
threshold. If a geometry can be assigned with a confidence higher than 95% to a class, the second 
criterion, i.e., one of the presented methods, is used to decide whether this sample is correctly 
classified or belongs to the class of unknown unknowns. The results are compared against 
manually classified and labeled data. Thereby, it is possible to not only compare how many clips 
were recognized correctly but also how many clips were not recognized. For the comparison of 
the presented three methods of the second criterion for decision, all results of the classifications of 
cable clips with the three data sets are listed in Table 1. Additionally, the number of all included 
cable clips for each dataset is given. The results of the classification without one of the mentioned 
second criteria are listed to show the extent of the open set problem when no second criterion is 
used.  
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Table 1. Comparison and evaluation of the three methods on three data sets 
Data set Data set A Cable bundle Data set B Data set C 

Geometries 
in the data set 

6.867 9.757 6.452 

Clips 932 484 239 

Metadata comparison 
Recognized as clip 803 339 159 

Correctly classified 803 = 86% of all clips 339 = 70 % of all clips 153 = 64 %  of all clips 

false-positive 0 0 6 

Feature vector correlation 
Recognized as clip 793 364 172 

Correctly classified 793 = 85% of all clips 356 = 73% of all clips 151 = 63% of all clips 

false-positive 0 8 21 

Comparison of multivariate Gaussian models/Kullback-Leibler 
Recognized as clip 829 320 168 

Correctly classified 829 = 88% of all clips 320 = 66% of all clips 161 = 67% of all clips 

false-positive 0 0 7 

Classification without a second criterion 

Recognized as clip 1316 841 423 

Correctly classified 724 = 78% of all clips 263 = 54% of all clips 137 = 57% of all clips 

false-positive 592 578 286 

 
When comparing the total amount of all cable clips in percent with the amount of correctly 
classified cable clips, it can be seen that the number of recognized cable clips is the highest for 
dataset A. This result was assumed since all geometries for the training originate from this data 
set. However, still not all clips were classified.  The fact that only about >80% of all cable clips 
were recognized by the classification is because of the small number of training examples, which 
comprises only 71 different clips. A maximum of 88% could be achieved, e.g., by Kullback-
Leibler divergence, which leaves room for further optimization by using more training data.  The 
clips that were “not recognized” are geometries that often occur only once in the data set and have 
not yet been added to the training data. The results of the classifications from datasets B and C 
show proportions of up to 73% of the total amount of cable clips. It is, thus, confirmed that the 
trained cable clips are reused in different data sets and can also be extracted from future sets. 
Although no cable clips in the training data were taken from data sets B or C, the classifier trained 
on data set A is able to identify cable clips in these datasets, proving that the generalizability of 
the classifier is successful. Based on the comparison with the results using only the first criterion 
(i.e., classification without a second criterion in the table), a significant decrease in the ratio of 
false-positive classifications can be observed for all three methods. In this case, most false-positive 
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classifications occur when classifying datasets B and C with the feature vector correlation method. 
Looking closely at these false-positive classifications, it can be seen that the results are due to 
geometries that have a high geometric similarity to the trained classes. Two examples of false-
positive predictions are shown in Figure 5. 

 

 

 

 
 

 
Figure 5. Two Examples of False-Positive Predictions (left)  

vs. Original Clip (right) in Dataset B 

Conclusion and Discussion 

The goal of the present work was to develop a framework for the automatic classification of 3D 
geometries using CNNs that is able to cope with unknown unknowns when being transferred to 
further datasets. It is confirmed that the application of transfer learning with a pre-trained CNN 
based on the Image-Net dataset is suitable to subsequently classify multi-view representations of 
different 3D geometries. Specifically, the convolutional basis of MobileNetV3Large, whose 
architecture has been extended and re-trained with additional classification layers for the 
classification of different cable clips was used. The representation of 3D geometries via the 
rendering of multi-views speeds up the computation effort heavily, since the processing of image 
data and also the image-based classification with CNNs is more efficient and faster than the 
processing of each individual geometry several times.  
For the application of this architecture in an open set scenario, three different approaches have 
been implemented as an additional criterion besides the classification by the Softmax output layer 
of the network. Three approaches were investigated in the current submission. The approaches for 
the second criterion are the matching of the geometry metadata, a comparison of the feature vectors 
of a previous classification layer using Spearman correlation, and the distance of the multivariate 
Gaussian models of these features using the Kullback-Leibler divergence. To analyze and compare 
the three methods, three different datasets are utilized using the same network architecture. The 
subsequent comparison of the methods was based on the number of correctly classified clips from 
the open set datasets and the number of false-positive classifications of unknown unknowns. The 
evaluation of the three methods for the second criterion proved that all three methods achieved a 
reduction of up to 100 percent in the number of false-positive classifications from the open set. 
Slight advantages could be observed when using the first method (comparison of metadata) and 
the third criterion (distance-based classification with Kullback-Leibler divergence).   However, 
these two methods also encounter proportionally more similarity-based errors than the comparison 
of metadata. Depending on whether a specific or a general approach for the classification of 3D 
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geometries from an open set is desired, this aspect should be taken into account. It is possible to 
confirm that through a one-time effort, namely picking out individual geometries that will be 
reused in the next datasets, in the future trained CNNs can be used to extract these geometries from 
new datasets. Especially for manual pre-processing steps to prepare large 3D data sets, this 
represents a significant time saving and thus an economic advantage. It has to be noted that our 
approach has some limitations, mainly caused by the application domain. The first criterion 
(comparison of metadata) is limited to the case that geometric information is available and that the 
same geometries (in different data sets) have the same dimensions. However, if the size and shape 
of the metadata remain constant, this criterion is suitable in terms of very reliable and accurate 
classification rates. The comparison of feature vectors (method 2) and Kullback-Leibler 
divergence (method 3) on the other hand, is based only on the evaluation of the similarity of the 
input images, resulting from the generated features and is thus generally applicable. 
In terms of knowledge management, the proposed methods aim to avoid misclassification in an 
open world setting, which is characterized by the fact that the number and variety of not-seen 
samples is huge in comparison to the seen samples during the classification process. We 
furthermore discussed on how 3D data can be transferred into the 2D space, to on the one hand 
reduce the computational effort and on the other hand increase the discriminative power.  For the 
feature representation, we proposed to use multi-view representations. To additionally have a 
proper knowledge representation, we compared different methods to preserve surface information. 
For our data, coloring using surface normal turned out to be slightly superior. To further manage 
previous knowledge in terms of object shapes, we used transfer learning and compared different 
models and additional layer designs. Finally, three methods on how unknown unknowns can be 
handled are presented and experiments are conducted. The experiments clearly show that the 
intervention of human annotators can be reduced, and especially standard parts can be identified 
automatically. Thus, this work makes benefit of the field of knowledge management for pattern 
recognition in many aspects and lay out the foundations for further research. In future research, 
the transferability to further problems, outside the CAD domain, has to be proven. Furthermore, 
the combination of the proposed solution to identify unknown unknowns with an extended 
transfer-learning where the identified unknown unknowns are added as new classes to the learning 
system would be of general interest. 
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